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We propose a model of our universe as a 3-sphere resting on the surface of a 
black hole which exists in a spacetime consisting of four space dimensions and 
one time dimension. The matter and energy within our universe exist as stationary 
solutions to the field equations in the Rindler coordinates just above the horizon 
of the black hole. Each solution may be thought of as a standing wave consisting 
of a wave propagating toward the horizon superposed with its time-reversed twin 
propagating away from the horizon. As matter and energy from the greater five- 
dimensional spacetime fall into the black hole, its radius increases and our universe 
expands. This mechanism of expansion allows the model to describe a universe 
which is older than its oldest stars and homogeneous without inflation. It also 
predicts galaxy counts at high redshift which agree with observation. 

1. I N T R O D U C T I O N  

The most  popular  model  o f  the universe,  that var ia t ion o f  the Big  Bang 
mode l  known as the E i n s t e i n - d e  Si t ter  model  (Einstein and de Sitter, 1932), 
has been shown to d isagree  with recent  as t ronomical  observat ions .  The  num- 
ber  o f  galaxies  per  unit redshif t  at a redshif t  o f  0.25 has been  es t imated  f rom 
observat ion  to be three to four  t imes h igher  than that p red ic ted  by the mode l  
(Li l ly  et al., 1991). Est imates  o f  the age o f  the universe ob ta ined  f rom the 
mode l  and recent  measurements  o f  the Hubble  constant  y ie ld  a value o f  about  

e ight  bi l l ion years  (Kennicut t  et al., 1995), while  es t imates  o f  the ages o f  
the oldest  stars turn out  to be about  16 bi l l ion years (Demarque  et aL, 

1991). It is imposs ib le  to make  a defini te  s tatement  at present ,  but i f  this 
t rend continues the Big Bang model  will  eventual ly  run into serious 

difficulty. 
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In a previous paper (McFarland, 1997) we proposed a model of spacetime 
which was 5-dimensional and Rindler in nature. Its line element was 

Z 2 
ds 2 = - - ~  dt 2 + dz 2 + dx 2 (1.1) 

where L is a parameter with units of length and d x  2 = (dxl) 2 -~- (dx2)  2 @ 

(dx3) 2. The coordinates x l, x 2, and x 3 are those of the 3-dimensional space 
we live in, while z is a Rindler coordinate. Stationary solutions to the field 
equations in this spacetime were obtained for scalar, spinor, and electromag- 
netic fields. The stationary nature of these solutions indicated that the probabil- 
ity of finding the associated particle in the space above the Rindler horizon 
was constant in time. The solutions seem to hang motionless above the 
horizon in spite of the gravitational field pulling them toward it. 

The solutions were all found to attenuate as exp(-pz),  where p is the 
momentum of the associated particle. This confines the solutions to a narrow 
region in z and, assuming these solutions to comprise all the matter and 
energy we can observe, provides us with the illusion that our space is 3- 
dimensional. This confinement may be viewed as the trapping of the associ- 
ated particles in the gravity well of the gravitational field which points toward 
the Rindler horizon. 

We showed that, although the field equations contain no mass term, 
solutions exist for which the energy E and momentum p of the associated 
particle satisfy E > p. The model thus permits the existence of mass without 
spoiling gauge symmetry and without the Higgs mechanism (Higgs, 1964). 
This was our motivation for introducing it. 

The model, although sufficiently motivated, was not very compelling 
because the Rindler nature of our spacetime was introduced as an a priori  

assumption. No convincing mechanism responsible for it was given. In this 
paper we provide such a mechanism. It will lead us to a cosmological model 
in which the universe expands as is the case with the Einstein-de Sitter model. 
The mechanism behind the expansion, however, is dramatically different in 
the two models. The model we propose has no initial Big Bang. It describes 
a universe which is much older than that of the Einstein-de Sitter model 
and is thus compatible with estimates of the ages of the oldest stars. It yields 
the correct number of galaxies/unit redshift and, in an unforced and natural 
way, it can also explain the large-scale homogeneity of the universe without 
inflation (Guth, 1981). 

2. THE MODEL 

We begin by assuming the universe to exist within a five-dimensional 
spacetime consisting of four space dimensions and one time dimension. 



New Cosmology 1425 

Hereafter this spacetime will be referred to as the 4D universe. The universe 
we live in has, of course, three space dimensions and one time dimension. 
Hereafter it will be referred to as the 3D universe. It will be seen to arise 
naturally in this model. We assume that Einstein's field equations in vacuum 
are true in the 4D universe. With the Ricci tensor given by 

p X _ _  p h R ~  = GF~x - 0xFX~ + F~xF~ 0 F~Fx0 (2.1) 

these field equations read 

Rr,~ = 0 (2.2) 

The F ~  are the Christoffel symbols, 

Fx~ = �89 + Gg,,~ - O,~g~v) (2.3) 

and all indices run from 0 through 4. The coordinates x ~ are defined such 
that x ~ is time and x r ix 4= 0, is a space coordinate. 

We will now obtain a spherically symmetric solution to equation (2.2) 
in the 4D universe. This solution is the analog of  the Schwarzschild solution 
in the 3D universe. 

We first assume the metric tensor to have the following spherically 
symmetric five-dimensional form. 

goo = -B(r), g r r  = A(r), gx• = rz 
g00 = r2 sin2x, g++ = r 2 sin2x sin20 (2.4) 

with all other g~v = 0 and g~V = (g~) - l  for Ix = v. In equation (2.4), r is 
the radial coordinate and • 0, and qb are the three angular coordinates of  
four-dimensional space. 

Inserting these g ~  into equation (2.3) yields values for the 125 Christoffel 
symbols. Of these, 22 are nonzero and are listed in the appendix. Using these 
in equation (2.1) yields the following relevant Ricci tensor components: 

B o o  -~ _ _ _  2AB" +-41(B'I{A'\--A/~--A + B_~) 2r3 B'A 

B" I(B'~(A' B_~) 3A' 
Rrr - 2B 4 \-ff /\-A + 2r a 

R x x = - 2 + 2 A \  A + + A  (2.5) 
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where a prime denotes the operation d/dr. These equations and equation (2.2) 
then yield 

0 = --~- + B - 2 r A  + 

and so 

A(r) - 

Equations (2.5) and (2.6) yield 

with solution 

B(r) 

rB' + 2B = 2 

(2.6) 

k 
B(r) = 1 + r2 

where k is a constant. In four-dimensional space the gravitational field of  
mass M at large r is g = - G M r / r  4, where G is the analog of the Newtonian 
gravitational constant in four-dimensional space. General relativity requires 
g = �89 = -�89 This then gives k = G M  and so 

G M  A(r) = 1 - -  (2.7) B(r) = 1 r2 , r2 j 

Equations (2.4) and (2.7) then give us the following five-dimensional line 
element: 

ds 2 =  - 1 - G M  dt 2 + 1 -  dr  2 +  r 2 d• 2 

+ r 2 sin2• d0 2 + r 2 sin2x sinZ0 dd0 2 (2.8) 

An obvious consequence of  equation (2.8) is the existence of black holes in 
the 4D universe. A black hole of mass M would have a radius R which satisfies 

R 2 = G M  (2.9) 

Another consequence of equation (2.8) can be seen by making the 
following coordinate transformation: 

= ( L2 ~ u2 
t' j t 

z = (GM)  v2 1 - 7 . /  
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X 1 ~-(GM)I/2(X-2) 

x2 = (GM)I/2( 0 - 2 )  

x 3 = (GM)l/z~b 

Under this transformation and near the point (r, X, 0, d~) = ((GM) l/z, 
"rr/2, "rr/2, qb), equation (2.8) becomes 

z 2 
ds z = - - ~  (dt') 2 + dz z + dx 2 (2.10) 

where dx z = ( dx 1)2 + ( dx Z) Z + (dx3)Z. Equations (2.10)and (1.1)are identical. 
Rindler coordinates may therefore be used to describe spacetime near the 
horizon of a black hole in the 4D universe. This fact, together with the 
existence of  the stationary solutions in Rindler coordinates described in our 
previous paper, allow us to propose the following cosmological model. 

The model can summarized as follows: Our 3D universe rests upon the 
surface of  a four-dimensional black hole. 

This black hole formed within the greater 4D universe at some time in 
the past. It probably formed much in the way an ordinary three-dimensional 
black hole might form at the center of a galaxy, by accumulation of material 
in a region of space through the action of  gravity. The material that formed 
the four-dimensional black hole was drawn from distant regions of the 4D 
universe and most of it now resides within the horizon of the four-dimensional 
black hole. Some of it, however, never made it that far. Some of the material 
became trapped as stationary solutions to the field equations in the Rindler " 
spacetime just above the horizon of the black hole. It remains there today 
and comprises all of  the matter and energy in our 3D universe. 

Like any three-dimensional black hole, the four-dimensional black hole 
will capture and swallow anything on a suitable trajectory. We assume the 
4D universe to contain material which today is still falling into the four- 
dimensional black hole. As this material falls in, the radius of the four- 
dimensional black hole increases. Our 3D universe, riding on the surface of  
this black hole, thus expands. This expansion depends upon the distribution 
of material in the 4D universe and is clearly unrelated to the amount of  
matter in our 3D universe. According to this model, then, there is no point 
in trying to settle the question of whether or not the universe is closed by 
looking around to see if there is enough matter to close it. The model says 
that our 3D universe is closed, but that the matter within it has nothing to 
do with its closure. Our 3D universe owes its closure to the fact that it is a 



1428 McFarland 

3-sphere resting upon the surface of a four-dimensional black hole and this 
fact owes its existence to mass within the horizon of the four-dimensional 
black hole. 

The four-dimensional black hole will continue to expand as long as 
material falls into it. As far as we know, this process will continue forever. 
Our 3D universe, although closed, may thus expand forever. As to how long 
it has been expanding, we cannot say. The four-dimensional black hole could 
have formed at any time in the past (subject to the constraint that it has 
existed long enough for the light from distant galaxies to have reached us). 

Another important feature of  this model is that it has no need of  a Big 
Bang. The four-dimensional black hole probably formed quietly. It could, 
however, have formed with the contents of our 3D universe at a high enough 
temperature for matter and radiation to exist in equilibrium. The remnant 
today of this would be the cosmic microwave background radiation. In the 
next section, we assume that matter and radiation were once coupled and 
estimate how long ago the decoupling occurred. 

3. T I M E S C S A L E  

In the last section, we showed that as material falls into the four- 
dimensional black hole, our 3D universe expands. The rate at which the mass 
M of the black hole increases is equal to the rate at which energy falls into 
it, which in turn must be proportional to the surface volume the black hole 
exposes to the 4D universe. This surface volume is proportional to R 3, where 
R is the radius of the four-dimensional black hole (and of our 3D universe). 
We therefore have 

d M  
- -  = A ' R  3 (3.1) 
d t  

where A' is a constant and t is time. 
Equations (2.9) and (3.1) yield 

d R  
_ _  = A R  2 
d t  

(3.2) 

where A = G A ' I 2 .  Equation (3.2) has the solution 

(3.3) 

where t is the time for our 3D universe to expand from radius R0 to radius R. 
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With equation (3.2) we can write the Hubble constant H as 

l d R  
H -  - AR  (3.4) 

R ~  

which can be used to write equation (3.3) in the following more conve- 
nient form: 

l( 0 ) t = ~ - 1 ( 3 . 5 )  

Matter decoupled from radiation at a redshift of z = 1400 (Peebles, 
1993). I f  the radius of  our 3D universe then was R0 and its radius is now R, 
then R/Ro - 1 = z = 1400. With H = 2.5 • 10 -j8 s -1 (approximately 
75 km/sMpc), equation (3.5) then yields t = 1.77 • 1013 years, a time which 
is much greater than the ages of  the oldest observed stars. 

The deceleration parameter q = - i ~ R / R  2 is found from equation (3.2) 
to have the value - 2 .  

4. H O M O G E N E I T Y  

The cosmological model outlined here is compatible with the large-scale 
homogeneity of  our 3D universe. To see this, we note that light can travel 
a distance R d X in time dt, where R dx /d t  = 1 and so dx = dt/R. From 
equation (3.3), R increases by dR during dt, where dt = dRIAR 2. Light 
therefore travels through d x  while R increases by dR, where 

dR 
dx  - A R  3 

Upon integrating we obtain 

X = ~ (4.1) 

as the angle through which light travels as R increases from R~ to R2. 
Assume that today our 3D universe is homogeneous out as far as X = 

XH from our location. This means that at some time tH in its early history, 
when R = RH, all the matter out to X = Xr~ was causally connected. Light 
therefore must have had a chance to travel through angle XH by the time 
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R = RH. In the new cosmological model, this is possible if the 3D universe 
existed at some time to < tH when R = R0 such that 

For any RH and • we might choose, we can find an R0 which satisfies 
this equation. 

5. TESTS 

We now present two observational tests of the new cosmological model. 
The first test is a prediction of the measured flux I of electromagnetic energy 
from an object of known power output P at redshift z. 

If the radius of our 3D universe was R0 when the object emitted the 
light and R when we received the light, then the energy/photon and the photon 
arrival rate will both be reduced by factor RolR during the photons' flight. 
This reduces the flux by factor (RolR) z. If the angle between us and the object 
is • then the area of a shell on which we reside which has the object at its 
center is 4arR 2 sin2• The flux we measure must then be 

, 
I = - -  4~R2  sin2 • (5.1) 

In time dt, light travels through angle d• = dt/R. From equation (3.3), 
we obtain R = R0/(1 - ARot) and so 

1 
d x = -if- (1 - ARot) dt  

lXo 

In time t, then, light travels through angle X, where 

(5.2) 

From equation (3.3) and the relation z = R/Ro - l, where z is the redshift, 
we have t = z lAR.  Substituting this into equation (5.2) yields 

z ( 1 )  z ( 1 )  
X = ~ - - ~  1 + ~ Z  =~--~ 1 + ~ Z  (5.3) 

where we have used equation (3.4). 
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Equations (5.1) and (5.3) yield our first prediction: 

P 
I = 4~(z + I)ZR z sinZ((cz/HR)(1 + z/2)) (5.4) 

where we have explicitly displayed the factor c. 
When we look at galaxies with redshift z, we see them when their density 

was P0 and the radius of the universe was R0. The number dN that we see 
in a shell centered at our location and of thickness Ro dx is therefore dN = 
4"rrR02p0 sin2x (Rod• and so 

dN 
- -  = 4"rrR3p0 sin2x (5.5) ax 

From equation (5.3) we obtain dz = HR d• + 1) = HRo d• We there- 
fore have 

dN 1 dN 
- ( 5 . 6 )  

dz HRo dx 

Equations (5.3), (5.5), and (5.6) yield our second prediction: 

d N -  4xrcp (z + 1)R 2 sinz(Cz(l_+z/2)~ (5.7, 
dz H 

where Ro = R/(z + 1) and the present density p of galaxies satisfies P0 = 
p(z + 1)3. In equation (5.7), we have once again explicitly displayed factors 
of c. 

A derivation similar to the one leading to equation (5.7), but performed 
within the Einstein-de Sitter model, yields (Peebles, 1993) 

dN 16~c3p 
dz H3 (z + 1)-3/211 - (z + 1)-u2] 2 (5.8) 

Evaluation of equations (5.7) and (5.8) at z = 0.25 with R ---> ~ in 
equation (5.7) reveals that at this redshift, the model presented here predicts 
a value of dNIdz which is 3.1 times larger than the one predicted by the 
Einstein-de Sitter model. The new model thus agrees much more closely 
with observation. 

6. DISCUSSION 

The cosmological model outlined here is free of most of the problems 
that appear to be associated with the Big Bang model. It describes a universe 
which is older than the stars it contains, and it predicts galaxy counts at high 
redshift which appear to coincide with observation. It also solves two problems 
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which have allegedly already been solved, those of homogeneity and the 
gauge-invariant assignment of masses to elementary particles (McFarland, 
1997). 

The model's success with the problem of age, galaxy counts, and homo- 
geneity can be traced to the fact that it describes a universe which expanded 
very slowly in its early history. The negative value of the deceleration parame- 
ter indicates that the expansion rate is actually increasing with time. The Big 
Bang model, on the other hand, describes a universe whose expansion rate 
was much greater in its early history and which is decreasing with time. 

The initially slow expansion rate associated with the new model creates 
a problem which does not exist within the Big Bang model. The Big Bang 
model correctly predicts the abundance of helium which was created in the 
early history of the universe (Peebles, 1993). This abundance is sensitive to 
the rate at which the universe was expanding at the time. We have not 
estimated the primordial production of helium within the framework of the 
new model. It seems clear, however, since the universe expands much more 
slowly in the new model, that the new model would predict a helium abun- 
dance which differs from the one predicted by the Big Bang model. 

It is possible, however, to wiggle out of this difficulty. At the time the 
four-dimensional black hole formed, the density of material in the region 
immediately external to the black hole was probably much higher than it is 
today. The constant A' in equation (3.1) would then be larger than it is today, 
and as a result our 3D universe would expand faster than expected in its 
early history. This early expansion rate could easily be adjusted to fit the 
observed helium abundance. 

A P P E N D I X  

Nonzero Christoffel symbols from the metric of equation (2.4) are 

_ 1 dA ~ r r~o -- r sin2• 
rf~ 2,4 d r '  F• = - A '  A 

F ~ , =  rsin2xsin20 F r 0 -  1 dB 

A ' 2A dr 

1 = = - ,  
r 

1 
= r o  = - ,  

r 

1 
r r* ,  = r , , - - - ,  

r 

FXo = -s in  • cos • 

r~o = ro~215 = cot  x ,  

Fx* + = F*x = cot X, 

l dB 
rOo  = r o, - 

2B dr 

F~,, = - s in  X cos X sin20 

F~, = - s in  0 cos 0 

r ~ ,  = r$0 = co t  0 
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